Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glycoconj J ; 40(2): 179-189, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36800135

RESUMO

Sugar-stabilised nanomaterials have received a lot of attention in cancer therapy in recent years due to their pronounced application as specific targeting agents and maximizing their therapeutic potential while bypassing off-target effects. Lectins, the carbohydrate-binding proteins, are capable of binding to receptors present on the target cell/tissue and interact with transformed glycans better than normal cells. Besides some of the lectins exhibit anticancer activity. Conjugating sugar-stabilised NPs with lectins there for is expected to multiply the potential for the early diagnosis of cancer cells and the specific release of drugs into the tumor site. Because of the prospective applications of lectin-sugar-stabilised nanoparticle conjugates, it is important to understand their molecular interaction and physicochemical properties. Momordica charantia Seed Lectin (MCL) is a type II RIP and has been known as an anti-tumor agent. Investigation of the interaction between sugar-stabilised silver nanoparticles and MCL has been performed by fluorescence spectroscopy to explore the possibility of creating an effective biocompatible drug delivery system against cancer cells. In this regard interaction between lectin and NPs should be well-preserved, while recognizing the specific cell surface sugar. Therefore experiments were carried out in the presence and absence of specific sugar galactose. Protein intrinsic fluorescence emission is quenched at ~ 20% at saturation during the interaction without any significant shift in fluorescence emission maximum. Binding experiments reveal a good affinity. Tetrameric MCL binds to a single nanoparticle. Stern-Volmer analysis of the quenching data suggests that the interaction is via static quenching leading to complex formation. Hemagglutination experiments together with interaction studies in the presence of specific sugar show that the sugar-binding site of the lectin is distinct from the nanoparticle-binding site and cell recognition is very much intact even after binding to AgNPs. Our results propose the possibility of developing MCL-silver nanoparticle conjugate with high stability and multiple properties in the diagnosis and treatment of cancer.


Assuntos
Nanopartículas Metálicas , Momordica charantia , Lectinas/metabolismo , Açúcares/metabolismo , Momordica charantia/química , Momordica charantia/metabolismo , Prata/análise , Prata/metabolismo , Carboidratos/análise , Sementes/química , Proteínas Inativadoras de Ribossomos/farmacologia , Proteínas Inativadoras de Ribossomos/análise , Proteínas Inativadoras de Ribossomos/metabolismo , Lectinas de Plantas/farmacologia , Lectinas de Plantas/química
2.
Chemistry ; 28(35): e202200994, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35390188

RESUMO

Ribosome-inactivating proteins, a family of highly cytotoxic proteins, interfere with protein synthesis by depurinating a specific adenosine residue within the conserved α-sarcin/ricin loop of eukaryotic ribosomal RNA. Besides being biological warfare agents, certain RIPs have been promoted as potential therapeutic tools. Monitoring their deglycosylation activity and their inhibition in real time have remained, however, elusive. Herein, we describe the enzymatic preparation and utility of consensus RIP hairpin substrates in which specific G residues, next to the depurination site, are surgically replaced with tz G and th G, fluorescent G analogs. By strategically modifying key positions with responsive fluorescent surrogate nucleotides, RIP-mediated depurination can be monitored in real time by steady-state fluorescence spectroscopy. Subtle differences observed in preferential depurination sites provide insight into the RNA folding as well as RIPs' substrate recognition features.


Assuntos
RNA , Proteínas Inativadoras de Ribossomos , Nucleosídeos/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , RNA/metabolismo , RNA Ribossômico/análise , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas Inativadoras de Ribossomos/análise , Proteínas Inativadoras de Ribossomos/metabolismo , Ribossomos/metabolismo
3.
Se Pu ; 39(3): 260-270, 2021 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-34227307

RESUMO

Type Ⅱ ribosome-inactivating proteins (RIPs) are an important class of protein toxins that consist of A and B chains linked by an interchain disulfide bond. The B-chain with lectin-like activity is responsible for binding to the galactose-containing receptors on eukaryotic cell surfaces, which is essential for A-chain internalization by endocytosis. The A-chain has N-glycosidase activity that irreversibly depurinates a specific adenine from 28S ribosomal RNA (28S rRNA) and terminates protein synthesis. The synergistic effect of the A-B chain inactivates the ribosome, inhibits protein synthesis, and exhibits high cytotoxicity. Ricin and abrin that are expressed by the plants Ricinus communis and Abrus precatorius, respectively, are typical type Ⅱ RIPs. The toxicity of ricin and abrin are 385 times and 2885 times, respectively, more that of the nerve agent VX. Owing to their ease of preparation, wide availability, and potential use as a bioterrorism agent, type Ⅱ RIPs have garnered increasing attention in recent years. Ricin is listed as a prohibited substance under schedule 1A of the Chemical Weapons Convention (CWC). The occurrence of ricin-related bioterrorism incidents in recent years has promoted the development of accurate, sensitive, and rapid detection and identification technology for type Ⅱ RIPs. Significant progress has been made in the study of toxicity mechanisms and detection methods of type Ⅱ RIPs, which primarily involve qualitative and quantitative analysis methods including immunological assays, mass spectrometry analysis methods, and toxin activity detection methods based on depurination and cytotoxicity. Immunoassays generally involve the specific recognition of antigens and antibodies, which is based on oligonucleotide molecular recognition elements called aptamers. These methods are fast and highly sensitive, but for highly homologous proteins in complex samples, they provide false positive results. With the rapid development of biological mass spectrometry detection technology, techniques such as electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) are widely used in the identification of proteins. These methods not only provide accurate information on molecular weight and structure of proteins, but also demonstrate accurate quantification. Enzyme digestion combined with mass spectrometry is the predominantly used detection method. Accurate identification of protein toxins can be achieved by fingerprint analysis of enzymatically digested peptides. For analysis of protein toxins in complex samples, abundant peptide markers are obtained using a multi-enzyme digestion strategy. Targeted mass spectrometry analysis of peptide markers is used to obtain accurate qualitative and quantitative information, which effectively improves the accuracy and sensitivity of the identification of type Ⅱ RIP toxins. Although immunoassay and mass spectrometry detection methods can provide accurate identification of type Ⅱ RIPs, they cannot determine whether the toxins will retain potency. The widely used detection methods for activity analysis of type Ⅱ RIPs include depurination assay based on N-glycosidase activity and cytotoxicity assay. Both the methods provide simple, rapid, and sensitive analysis of type Ⅱ RIP toxicity, and complement other detection methods. Owing to the importance of type Ⅱ RIP toxins, the Organization for the Prohibition of Chemical Weapons (OPCW) has proposed clear technical requirements for the identification and analysis of relevant samples. We herein reviewed the structural characteristics, mechanism of action, and the development and application of type Ⅱ RIP detection methods; nearly 70 studies on type Ⅱ RIP toxins and their detection methods have been cited. In addition to the technical requirements of OPCW for the unambiguous identification of biotoxins, the trend of future development of type Ⅱ RIP-based detection technology has been explored.


Assuntos
Abrina , Proteínas Inativadoras de Ribossomos/análise , Ricina , Abrina/análise , Proteínas de Plantas/análise , Ribossomos , Ricina/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
4.
Artigo em Inglês | MEDLINE | ID: mdl-29202361

RESUMO

Ribosome-inactivating proteins (RIPs) are toxic enzymes that are mostly biosynthesized by plants. RIPs are N-glycosidases that cleave an essential adenine molecule from the 28S rRNA. This is followed by the irreversible inhibition of protein synthesis leading to cell death. By fusing RIPs to cancer cell specific targeting ligands RIPs have been utilized for targeted anti-tumor therapy. The anti-tumoral efficiency of such conjugates depends significantly on the N-glycosidase activity of the RIP domain. Different methods have been developed in order to determine the N-glycosidase activity of RIPs and RIP domain containing anti-tumor toxins. However the existing methods are elaborate and include radioassays, HPLC and enzymatic conversion assays. Here, a simple and cost effective N-glycosidase assay is presented, which is based on the direct determination of the released adenine by thin-layer chromatography (TLC) and TLC-densitometry. An adenine based single stranded oligonucleotide is used as substrate. Following TLC development the released adenine is quantified on silica glass plates by UV absorbance at 260nm.


Assuntos
Adenina/análise , Cromatografia em Camada Delgada/métodos , Proteínas Inativadoras de Ribossomos/análise , Proteínas Inativadoras de Ribossomos/metabolismo , Adenina/metabolismo , Dianthus/enzimologia , Dianthus/genética , Ensaios Enzimáticos , Escherichia coli/genética , Modelos Lineares , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Inativadoras de Ribossomos/genética , Saponaria/enzimologia , Saponaria/genética
5.
Plant Foods Hum Nutr ; 71(3): 265-71, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27319013

RESUMO

Ribosome inactivating proteins (RIPs) have received considerable attention in biomedical research because of their unique activities towards tumor and virus-infected cells. We extracted balsamin, a type-I RIP, from Momordica balsamina. In the present study, a detailed investigation on DNase activity, antioxidant capacity and antibacterial activity was conducted using purified balsamin. DNase-like activity of balsamin towards plasmid DNA was pH, incubation time and temperature dependent. Moreover, the presence of Mg(2+) (10-50 mM) influenced the DNA cleavage activity. Balsamin also demonstrated reducing power and a capacity to scavenge free radicals in a dose dependent manner. Furthermore, the protein exhibited antibacterial activity against Staphylococcus aureus, Salmonella enterica, Staphylococcus epidermidis and Escherichia coli, which suggests potential utility of balsamin as a nutraceutical.


Assuntos
Antibacterianos/farmacologia , Desoxirribonucleases/antagonistas & inibidores , Momordica/química , Proteínas de Plantas/farmacologia , Proteínas Inativadoras de Ribossomos/farmacologia , Antibacterianos/análise , Antioxidantes/análise , Antioxidantes/farmacologia , Escherichia coli/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Magnésio/metabolismo , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Proteínas de Plantas/análise , Proteínas Inativadoras de Ribossomos/análise , Salmonella enterica/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos
6.
Anal Biochem ; 378(1): 87-9, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18394420

RESUMO

A simple electrochemiluminescence-based assay for RNA N-glycosidase activity has been modified to permit its use with authentic extracts of Ricinus communis (castor beans) and Abrus precatorius (jequirity seeds)--the natural sources of ricin and abrin. Modifications include the addition of an RNase inactivator to the reaction mixture, elimination of a signal-enhancing monoclonal antibody, and optimization of the incubation temperature. Concurrent testing with two substrates provides a diagnostic tool enabling castor bean toxins to be differentiated from a larger selection of N-glycosidase toxins than was previously examined.


Assuntos
Medições Luminescentes/métodos , Proteínas Inativadoras de Ribossomos/análise , Proteínas Inativadoras de Ribossomos/metabolismo , Ricina/metabolismo , /enzimologia , Eletroquímica , Ativação Enzimática , Técnicas de Diluição do Indicador , Extratos Vegetais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...